UNIT <i>G</i> 481	Module 2	1.2.2	Non-linear Motion	ŀ	MASS (m) AND WEIGHT (W) 1
• <u>Candida</u> • Ex re	<u>tes should be able to</u> : plain that an object trave sistive or frictional force	elling in a known as	fluid experiences a s <mark>DRAG</mark> .	•	The <u>MASS (m)</u> of an object is a measure of its resistance to acceleration or deceleration (i.e. its inertia). The greater the mass, the harder it is to get an object moving or to stop it once it is in motion.
• <u>51</u> <u>FC</u>	t <u>ate</u> the factors that affe DRCE	ect the m	agnitude of the <u>DRAG</u>		The S.I. unit of mass is the <u>KILOGRAM (kg)</u> .
• De dr	etermine the acceleration rag.	of an obj	iect in the presence of		The mass of an object is the same wherever it may be.
• 51 ac	tate that the <u>WEIGHT</u> of ting on the object. elect and use the relations	an objec	t is the gravitational force	•	The <u>WEIGHT (W)</u> of an object is the gravitational force which acts on the object (It can also be defined as the force needed to support the object).
	Weight = mass x W = mg	accelera	ntion of free fall	•	The acceleration of a falling object acted on by the gravitational force only is the <u>acceleration due to gravity (g) (= 9.81 m s⁻²)</u> .
• De fie	escribe the motion of bodi eld with drag.	ies falling	n in a uniform gravitational		The value of 'g' varies slightly from place to place on the Earth's Surface because of :
• Us	se and explain the term <u>Tl</u>	ERMINAL	<u>L VELOCITY</u> .		 Non-uniformities in the shape and composition of the planet. The effect of the Earth's rotation about its axis.

UNIT 6481	Module 2	1.2.2	Non-linear Motion	•	DRAG AND TERMINAL VELOCITY	2
• The force the object of the	The which causes the object's weight and we can be caused of the acceleration of ong gravity is at a particular produce of t	ect's accele derive an eq a ss x accelo g g kg n e free fall (g) place (e.g. The vity is much we kL FIELD ST tational field	ration of free fall (g) is muation for it using: eration of free fall s^{2} or $N kg^{1}$ is an indication of how everage value of 'g' on value is 1. 67 m s ⁻² on eaker. RENGTH in N/kg. strength	•	 Any object which is moving through a FLUID (i.e. a liquid or a gas) is subject to a resistive <u>DRAG FORCE</u> which opposes the motion. The magnitude of the <u>DRAG FORCE</u> depends on : The SPEED of the object. (The faster the object is moving, the greater the drag force). The SHAPE of the object. (The more streamlined the object is, the smaller the drag force). The VISCOSITY of the fluid. * VISCOSITY is a measure of the ease with which a fluid flows past a surface. (The greater the viscosity of the fluid, the greater the drag force). MOTION OF AN OBJECT FALLING THROUGH A FLUID Consider an object released from rest in a fluid (e.g. air, water, oil). At first, the only force acting on it is its weight acting downwards. As it falls, its speed increases and so the resistive drag force increases. 	
					 The resultant force (= weight - drag force) then decreases and so the acceleration decreases. Eventually, as it continues to fall, the object will reach a velocity (called the TERMINAL VELOCITY) for which the drag force = the weight. The resultant force is then zero and so the acceleration is zero. The object then continues to fall at the constant TERMINAL VELOCITY. 	-XA

UNIT *G*481

Module 2 1.2.2

Non-linear Motion

MAXIMUM SPEED OF A POWERED VEHICLE

<u> 1967 — Bonneville Salt Flats, Utah.</u>

New Zealander Burt Munroe set the World land speed record for engines below 1000 cc when he rode his self customized Indian Scout motorbike and clocked an amazing **184 mph**. This record still stands today! The 2005 film, **"The World's Fastest Indian"**, tells the story of Burt's lifelong quest to make his bike go as fast as it could possibly go.

1997 — Black Rock Desert, Nevada.

The **Thrust SSC rocket car** broke the World land speed record when it reached the incredible top speed of **763 mph** (faster than sound) over a distance of 1 mile.

1969 — 100 km above the Pacific ocean

The **Apollo 10 command capsule** reached a top speed of **24,790 mph** on re-entry into the Earth's atmosphere.

This is not a powered vehicle, unless we consider the Earth's gravitational pull to be the provider of a constant motive force.

WHY DOES ANY POWERED VEHICLE HAVE A TOP SPEED ?

The **maximum speed** achievable by an engine-powered vehicle depends on :

- The maximum forward force which the engine can provide.
- How quickly the drag force value will increase to equal the engine force. This depends on the shape of the vehicle (i.e. how streamlined it is).

The **RESULTANT FORCE** (F_{R}) which gives the vehicle its forward Acceleration is given by :

 $\begin{array}{rcl} \textit{RESULTANT FORCE} & = & \textit{ENGINE FORCE} & - & \textit{DRAG FORCE} \\ & F_{R} & = & F_{E} & - & F_{D} \end{array}$

<u>INITIALLY</u>: vehicle speed = 0, so drag force = 0

Therefore, **resultant force**, **F**_R = **F**_E - **F**_D = **F**_E

So the vehicle has maximum acceleration.

As the vehicle's speed increases, the drag force on it (due to air resistance) also Increases, and :

<u>EVENTUALLY</u>: vehicle speed = v_T (its TERMINAL or 'TOP' speed)

Then, $drag force, F_D = F_E$

Therefore, resultant force, $F_R = F_E - F_D = 0$

So the vehicle acceleration is zero.

The vehicle has then achieved its maximum speed and it will carry on moving at this constant speed

© 2008 FXA

4

UN	IT G481	Module 2	1.2.2	Non-linear Motion	•	HOMEWORK QUESTIONS		
•	 PRACTICE QUESTIONS A car of mass 1050 kg is travelling along a straight, flat road. The forward force provided by the car's engine is 775 N and the drag force due to air resistance is 325 N. 		1	 A mobile crane of mass 60 000 kg has an engine which can provide a motive force of 6.0 x 10³ N and a maximum speed of 24 m s⁻¹. Calculate : (a) The vehicle's maximum acceleration from rest. (b) The distance travelled by the vehicle at maximum acceleration to reach a speed of 15 m s⁻¹ from rest. 				
	Calculate	e the <i>acceleration</i> of the	e car.		2	A steel ball bearing was released from rest to fall through water in a tall		
2	 Skydivers jump from a plane at intervals of a few seconds. If two divers want to join up as they fall, the second diver has to catch up with the first. (a) If diver <i>A</i> has a total mass of <i>110 kg</i> and diver <i>B</i> has a total mass of <i>85 kg</i>, use the idea of <i>forces and terminal velocity</i> to explain which diver needs to jump first. (b) If the two divers are of the <i>same mass, explain</i> what the second diver can do so as to catch up with the first. 					 measuring cylinder. The diagram opposite shows a graph of the <i>distance</i> fallen by the ball bearing plotted against <i>time taken</i>. (a) What feature of the graph gives the <i>speed</i> of the ball bearing at any instant. 		
3	 A steel ball bearing of mass 0.05 kg released from rest in oil falls through a vertical distance of 0.18 m in 4.0 s. Assuming the ball reaches its terminal velocity instantaneously, calculate : (a) Its terminal velocity. 			ased from rest in oil falls . <i>O s.</i> Assuming the ball ly, calculate :	 (b) <i>Describe</i> the motion of the ball bearing from the moment it was released until time = 0.5 s. (c) Sketch a <i>speed/time</i> graph for the ball bearing's descent. 			
	(b) The value of the <i>drag force</i> acting on the ball when it is falling at its terminal velocity. (Assume that the <i>acceleration of free fall, g = 9.81 m s⁻²</i>)				(d) Explain, in terms of the forces acting on the ball bearing, why its acceleration decreased to zero during its descent. What happens when the ball's acceleration is zero ?			
						© 2008 FX		

A skydiver of total mass **80** kg is falling freely at *constant speed* when she opens her parachute.

- (a) Calculate : (i) The skydiver's *weight*.
 - (ii) The *drag force* on the skydiver before she opened her parachute.
- (b) The graph shows how the skydiver's speed changed after the parachute was opened.
 - (i) *Explain* why her speed decreased suddenly when the parachute was opened.
 - (ii) Use the graph to estimate her *maximum deceleration* after opening the parachute.
 - (iii) Sketch a graph to show how the *drag force* on the skydiver changed as a result of opening the parachute.

The diagram opposite shows a gannet hovering above a water surface.

The gannet is **30** *m* above the surface of the water. It folds its wings and falls vertically in order to catch a fish that is **6.0** *m* below the surface.

6

Assume air resistance to be negligible and take the *acceleration of* free fall, $g = 9.81 \text{ m s}^{-2}$.

(a) Calculate : (i) The *speed* at which the bird enters the water.

- (ii) The *time taken* for the bird to fall to the water surface.
- (b) The bird does *not* continue to travel at the acceleration of free fall when it enters the water.

State and *explain* the effect of the forces acting on the bird as it falls :

(i) Through the air.

(ii) Through the water.

(OCR AS Physics - Module 2821 - June 2006)

© 2008 FXA